ETUDE DE PHOSPHATES CONDENSES DIAGRAMME D'EQUILIBRE DU SYSTEME AgPO₃-Pr(PO₃)₃ Données sur AgPr(PO₃)₄

D. Ben Hassen-Chehimi et M. Trabelsi-Ayedi

Ecole Normale Supérieure, Zarzouna, Bizerte, Tunisie

(Reçu le 20 Mai 1994)

Abstract

The AgPO₃-Pr(PO₃)₃ system has been studied for the first time by differential thermal analysis, X-ray diffraction and IR spectroscopy. The system shows one compound AgPr(PO₃)₄ which melts in a peritectic decomposition at 1069 K. An eutectic appears at 761 K.

AgPr(PO₃)₄ belongs to the monoclinic system with space group P2₁/c,Z=4. The parameters of the unit cell are: a=12.000(9), b=13.177(4), c=7.046(5) Å and $\beta=123^{\circ},81(6)$, Z=4.

Its IR absorption spectrum is typical of chain phosphates.

Keywords: AgPO₃-Pr(PO₃)₃ system

Introduction

L'étude des interactions des polyphosphates d'argent AgPO₃ et de praséodyme $Pr(PO_3)_3$, faisant l'objet de ce travail, fait suite à l'étude systématique des systèmes de type $M^IPO_3-Ln(PO_3)_3$ [1-7] et qui a permis de mettre en évidence la formation des composés phosphatés $M^ILn(PO_3)_4$ et $M_2^ILn(PO_3)_5$. Ces derniers composés peuvent présenter un intérêt dû à leurs propriétés optiques [8-9]. Le diagramme d'équilibre AgPO₃-Pr(PO₃)₃ est établi pour la première fois.

Techniques expérimentales

Le diagramme d'équilibre solide-liquide du système $AgPO_3-Pr(PO_3)_3$ a été établi par micro-analyse thermique différentielle en montée de température à l'aide d'un micro-analyseur SETARAM M5 et d'un micro-analyseur RIGAKU PTC-10A.

Les échantillons utilisés, de masse environ 25 mg, sont des mélanges de polyphosphate d'argent AgPO₃ et de tricyclophosphate trihydraté de

praséodyme PrP₃O₉·3H₂O. Ces échantillons, finement broyés sont recuits dans des creusets en platine. Les thermocouples Pt/Pt-Rh utilisés pour détecter les accidents thermiques, sont étalonnés par rapport aux températures de transition de phases ou de fusion de composés purs. L'alumine Al₂O₃ (α) est choisie comme référence; la vitesse de chauffe est de 10 deg·min⁻¹.

Les mélanges riches en phosphate d'argent de 50% à 97.5% sont recuits à 750 K; par contre, les mélanges riches en phosphate de praséodyme sont recuits à 973 K pendant quelques semaines.

Les spectres de diffraction des rayons-X sont enregistrés sur un diffractomètre Philips 1050/70 à la vitesse de $(1/8)^{\circ}(2 \theta/\min)$ utilisant la longueur d'onde K_{a1} du cuivre.

Les spectres d'absorption IR sont enregistrés à l'aide d'un spectrographe Perkin-Elmer IR 783 sur des échantillons en pastilles dilués dans KBr.

Produits utilisés

Les produits utilisés pour l'établissement du diagramme d'équilibre $AgPO_3-Pr(PO_3)_3$ ont été préparés suivant des procédures connues.

Le polyphosphate d'argent $AgPO_3$ est obtenu par calcination de $Ag_3P_3O_9$ · H₂O; ce dernier est obtenu à partir de la réaction entre deux solutions de Na₃P₃O₉ et AgNO₃ [10].

 $PrP_3O_9 \cdot 3H_2O$ est obtenu selon la méthode décrite par Serra [11], à partir de deux solutions de Na₃P₃O₉ et PrCl₃·PrP₃O₃, 3H₂O se déshydrate à 573 K [12] lors des recuits que subissent les mélanges.

Résultats

Diagramme d'équilibre

La représentation graphique du diagramme d'équilibre solide-liquide du système $AgPO_3-Pr(PO_3)_3$ est donnée sur la figure 1. Les principaux résultats thermiques sont groupés dans le tableau 1. Le traitement thermique ne conduit qu'à la formation d'un seul composé intermédiaire à fusion non congruente $AgPr(PO_3)_4$ qui se décompose à la température de 1069 K suivant la réaction péritectique:

$$AgPr(PO_3)_4 \rightarrow Pr(PO_3)_3 + liquide.$$

L'eutectique fond à 761 K. Les phases solides en équilibre (Figure 1) ont été identifiées par les diagrammes de diffraction X des poudres et les spectres IR des mélanges pris dans les différents domaines.

Molaire Pr(PO ₃) ₃ /%	Température / K	Accident thermique	
0	773	fusion de AgPO ₃	
0	761	eutectique	
17	1069	début du palier péritectique	
50	1069	décomposition péritectique de AgPr(PO ₃) ₄	
100	1529	Fusion de Pr(PO ₃) ₃	
Т. К - 1400 -		0000	
1200-		069	
		PO3)4	
800 	761	AgPr(1	
AgPO3	20 40	60 80 Pr(PO ₃) ₃	

Tableau 1 Caractéristiques thermiques du diagramme d'équilibre solide-liquide du système AgPO₃-Pr(PO₃)₃

Fig. 1 Représentation graphique du diagramme d'équilibre du système AgPO₃-Pr(PO₃)₃

Préparation des monocristaux de AgPr(PO₃)₄

La poudre polycristalline de $AgPr(PO_3)_4$ est obtenue par simple mélange stoechiométrique de $AgPO_3$ et $PrP_3O_9 \cdot 3H_2O$ chauffé à 973 K pendant une semaine.

Les monocristaux sont synthétisés d'une autre manière: dans un creuset en carbone vitreux, un mélange d'acide orthophosphorique H_3PO_4 (85%), de carbonate d'argent Ag_2CO_3 et d'oxyde de praséodyme Pr_6O_{11} est chauffé à 560 K pendant une semaine, les cristaux de $AgPr(PO_3)_4$ obtenus sont lavés avec une solution chaude d'acide nitrique.

Etude cristallographique de AgPr(PO₃)₄

L'étude du diagramme de diffraction des rayons X (Tableau 2) des cristaux formés montre que le phosphate $AgPr(PO_3)_4$ est isotype de $AgLa(PO_3)_4$ [13] qui cristallise dans le système monoclinique $P2_1/c$. Un affinement par moindre carrés des données angulaires du diagramme de poudre de $AgPr(PO_3)_4$ conduit aux paramètres cristallins suivants:

$$a=12,000(9); b=13,177(4); c=7,046(5) \text{ Å}; \beta=123^{\circ},81(6); Z=4.$$

hkl	d _{obs} / Å	$d_{\rm cal}$ / Å	Iobs	hkl	d _{obs} / Å	$d_{\rm cal}$ / Å	Iobs
110	7.96	7.95	3	330	2.648	2.650	4
020	6.60	6.59	100	150	2.546	2.548	13
130	4.019	4.019	32	400	2.492	2.492	3
220	3.979	3.975	46	410	2.444	2.449	3
031	3.517	3.513	6	051	2.400	2.403	1
230	3.299	3.295	4	250	2.330	2.330	2
310	3.224	3.222	4	151	2.218	2.223	2
312	3.184	3.185	3	060	2.196	2.196	6
140	3.129	3.128	3	532	2.085	2.088	2
122	2.995	2.993	1	350	2.065	2.065	7
331	2.953	2.957	7	170	1.850	1.850	16
240	2.749	2.748	32	062	1.756	1.757	3

Tableau 2 Dépouillement du spectre de poudre de AgPr(PO₃)₄

Spectre IR de AgPr(PO₃)₄

Le spectre d'absorption IR de $AgPr(PO_3)_4$, enregistré dans l'intervalle 4000-200 cm⁻¹ (Figure 2, Tableau 3) présente des bandes d'absorption dans les différents domaines de vibration O-P-O, P-O-P, M-O ... etc.

J. Thermal Anal., 44, 1995

Mode de vibration	Fréquences v / cm^{-1}		
Vas OPO	1300-1235-1215-1195		
v₅ O–P–O	1170-1155-1130-1110		
$v_{as} P - O - P$	1050 1010 910		
v _s P–O–P	790- 750- 725- 685		
δ Ο-Ρ-Ο	575- 570- 530- 515- 470- 445- 410		
δ Ρ-Ο-Ρ	<400		

Tableau 3 Fréquences de vibration de AgPr(PO₃)₄

La bande de la vibration de valence antisymétrique v_{as} des groupements terminaux P-O apparaît sous forme de 4 composantes entre 1300 et 1200 cm⁻¹.

La vibration de valence symétrique v_s de ces groupements est formée de quatre bandes fines entre 1200 et 1100 cm⁻¹. La vibration v_{as} (P–O–P) présente deux bandes intenses, avec un épaulement dont les maximums sont situés à 1050, 1010 et 910 cm⁻¹. Quant à la vibration v_{as} (P–O–P), elle apparaît sous forme de quatre bandes fines et intenses à 790, 750, 725 et 685 cm⁻¹. Le domaine des vibrations δ (P–O–O), (P–O–P), (M–O) vibration des chaines (PO₃)_∞, présente des bandes fines et intenses; la bande située à 1235 cm⁻¹ avec un épaulement à 1300 cm⁻¹, les bandes à 910, 790, 750 cm⁻¹ sont caractéristiques d'un anion PO₄⁻³ à enchaînement linéaire [14–18].

Références

- 1 F. Mokhtar, N. Kbir-Ariguib et M. Trabelsi, J. Solid State Chem., 38 (1981) 130.
- 2 D. Ben Hassen, N. K. Ariguib, M. Dabbabi et M. Trabelsi, C. R. Acad. Sci., 294 (1982) 375.
- 3 M. Ferid, N. K. Ariguib et M. Trabelsi, Mater. Chem. Phys., 10 (1984) 175.
- 4 D. Ben Hassen, N. K. Ariguib et M. Trabelsi, Thermochim. Acta, 79 (1984) 251.
- 5 M. Ferid, N. K. Ariguib et M. Trabelsi, Thermochim. Acta, 81 (1984) 175.
- 6 M. Ferid, N. K. Ariguib et M. Trabelsi, J. Solid State Chem., 69 (1987) 1.
- 7 M. Ferid, N. K. Ariguib, M. Trabelsi-Ayedi, Thermochim. Acta, 136 (1988) 139.
- 8 H. P. Weber, P. F. Liao, B. C. Tofield et P. M. Bridenbaugh, Appl. Phys. Lett., 26 (1975) 692.
- 9 K. Kubodera, J. Nakno, K. Otsuka et S. Miyazawa, J. Appl. Phys., 49 (1978) 65.
- 10 J. C. Grenier, Bull. Soc. Fr. Mineral. Cristallog., 96 (1973) 171.
- 11 O. A. Serra et E. Giesbrecht, J. Inorg. Nucl. Chem., 30 (1968) 713.
- 12 O. A. Serra et E. Giesbrecht, J. Inorg. Nucl. Chem., 30 (1968) 719.
- 13 D. Ben Hassen, N. K. Ariguib et M. Trabelsi, Thermochim. Acta, 68 (1983) 35.
- 14 D. E. C. Corbridge et E. J. Lowe, J. Chem. Soc., (1954) 493.
- 15 V. W. Bues et H. W. Gehrke, Z. Anorg. All. Chem., 228 (1956) 291.
- 16 M. A. Vaivada et Z. A. Konstant, Izv. Akad. Nauk SSSR, Neorg. Mater., 15 (1978) 824.
- 17 K. Byrappa, I. I. Plyusnina et G. I. Porokhova, J. Mater. Sci., 17 (1982) 1847.
- 18 K. Byrappa et B. N. Litvin, J. Mater. Sci., 18 (1983) 2056.

Zusammenfassung — Erstmalig wurde das System AgPO₃-Pr(PO₃)₃ mittels DTA, Röntgendiffraktion und IR-Spektroskopie untersucht. Das System weist eine Verbindung AgPr(PO₃)₄ auf, die unter peritektischer Zersetzung bei 1069 K schmilzt. Bei 761C erscheint ein Eutektikum. AgPr(PO₃)₄ gehört zum monoklinen System mit der Raumgruppe P2₁/c, Z = 4. Die Parameter

der Elementarzelle lauten: a=12.000(9), b=13.177(4), c=7.046(5) Å und $\beta = 123,81(6)$, Z=4.

Das IR-Absorptionsspektrum ist typisch für Kettenphosphate.